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Abstract
We establish the conditions that must be satisfied for the mathematical operations of 
linear algebra and calculus to be applicable. The mathematical foundations of decision 
theory and related theories depend on these conditions which have not been correctly 
identified in the classical literature. Operations Research and Decision Analysis Societ-
ies should act to correct fundamental errors in the mathematical foundations of mea-
surement theory, utility theory, game theory, mathematical economics, decision 
theory, mathematical psychology, and related disciplines. 

Keywords
Foundations of science, measurement theory, decision theory, social choice, group 
decision making, utility theory, game theory, economic theory, mathematical psychol-
ogy.

1 Introduction
The construction of the mathematical foundations of any scientific discipline requires 
the identification of the conditions that must be satisfied to enable the application of 
the mathematical operations of linear algebra and calculus. We identify these condi-
tions and show that classical measurement and evaluation theories, including utility 
theory, cannot serve as the mathematical foundation of decision theory, game theory, 
economics, or other scientific disciplines because they do not satisfy these conditions. 

The mathematical foundations of social science disciplines, including economic 
theory, require the application of mathematical operations to non-physical variables, i.e, 
to variables such as preference that describe psychological or subjective properties. 
Whether psychological properties can be measured (and hence whether mathematical 
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operations can be applied to psychological variables) was debated by a Committee that 
was appointed in 1932 by the British Association for the Advancement of Science but 
the opposing views in this debate were not reconciled in the Committee’s 1940 Final 
Report.

In 1944, game theory was proposed as the proper instrument with which to 
develop a theory of economic behavior where utility theory was to be the means for 
measuring preference. We show that the interpretation of utility theory’s lottery opera-
tion which is used to construct utility scales leads to an intrinsic contradiction and that 
the operations of addition and multiplication are not applicable on utility scale values. 
We present additional shortcomings of utility theory which render it unsuitable to 
serve as mathematical foundations for economics or other theories and we reconstruct 
these foundations.

2 Measurement of Preference
The applicability of mathematical operations is among the issues implicitly addressed 
by von Neumann and Morgenstern in [53, §§3.2—3.6] in the context of measurement of 
individual preferences. Preference, or value, or utility, is not a physical property of the 
objects being valued, that is, preference is a subjective, i.e. psychological, property. 
Whether psychological properties can be measured was an open question in 1940 
when the Committee appointed by the British Association for the Advancement of 
Science in 1932 “to consider and report upon the possibility of Quantitative Estimates 
of Sensory Events” published its Final Report (Ferguson et al. [30]). An Interim Report, 
published in 1938, included “a statement arguing that sensation intensities are not mea-
surable” as well as a statement arguing that sensation intensities are measurable. These 
opposing views were not reconciled in the Final Report.

The position that psychological variables cannot be measured was supported by 
Campbell’s view on the role of measurement in physics [24, Part II] which elaborated 
upon Helmholtz’s earlier work on the mathematical modelling of physical measure-
ment [35]. To re-state Campbell’s position in current terminology the following is 
needed. 

By an empirical system E we mean a set of empirical objects together with operations
(i.e. functions) and possibly the relation of order which characterize the property under 
measurement. A mathematical model M of the empirical system E is a set with opera-
tions that reflect the empirical operations in E as well as the order in E when E is 
ordered. A scale s is a mapping of the objects in E into the objects in M that reflects the 
structure of E into M (in technical terms, a scale is a homomorphism from E into ). 

The purpose of modelling E by M is to enable the application of mathematical 
operations on the elements of the mathematical system M: As Campbell eloquently 
states [24, pp. 267—268], “the object of measurement is to enable the powerful weapon 
of mathematical analysis to be applied to the subject matter of science.” 

In terms of these concepts, the main elements of Campbell’s view are summarized 
by J. Guild in Ferguson et al. [30, p. 345] in the context of measurement of sensation
where he states that for psychological variables it is not possible to construct a scale 
that reflects the empirical operation of addition because such an empirical (or “practi-

M
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cal”) addition operation has not been defined; if the empirical operation does not exist, 
its mathematical reflection does not exist as well.

The framework of mathematical modelling is essential. To enable the application of 
mathematical operations, the empirical objects are mapped to mathematical objects on 
which these operations are performed. In mathematical terms, these mappings are 
functions from the set of empirical objects to the set of mathematical objects (which 
typically are the real numbers for the reasons given in §7.2). Given two sets, a large 
number of mappings from one to the other can be constructed, most of which are not 
related to the characterization of the property under measurement: A given property 
must be characterized by empirical operations which are specific to this property and 
these property-specific empirical operations are then reflected to corresponding opera-
tions in the mathematical model. Measurement scales are those mappings that reflect 
the specific empirical operations which characterize the given property to correspond-
ing operations in the mathematical model. Therefore, the construction of measurement 
scales requires that the property-specific empirical operations be identified and refl-
ected in the mathematical model. Moreover, the operations should be chosen so as to 
achieve the goal of this construction which is the application of mathematical opera-
tions in the mathematical model.

2.1 Empirical Addition — Circumventing the Issue
Accordingly, von Neumann and Morgenstern had to identify the empirical operations 
that characterize the property of preference and construct a corresponding mathemati-
cal model. As we shall see in §5, the operations of addition and multiplication are not 
enabled in their mathematical model and their empirical operation requires an inter-
pretation that leads to an intrinsic contradiction.

The task of constructing a model for preference measurement is addressed by von 
Neumann and Morgenstern in [53, §3.4] indirectly in the context of measurement of 
individual preference. While the operation of addition as applies to length and mass
results in scales that are unique up to a positive multiplicative constant, physical vari-
ables such as time and potential energy to which standard mathematical operations do 
apply are unique up to an additive constant and a positive multiplicative constant. (If s
and t are two scales then for time or potential energy  for some real numbers 
p and  while for length or mass  for some .) This observation implies 
that Guild’s argument against the possibility of measurement of psychological variables 
is not entirely correct. It also seems to indicate the need to identify an empirical — “nat-
ural” in von Neumann and Morgenstern’s terminology — operation for preference mea-
surement for which the resulting scales are unique up to an additive constant and a 
positive multiplicative constant. Seeking an empirical operation that mimics the “center 
of gravity” operation, they identified the now-familiar utility theory’s operation of con-
structing lotteries on “prizes” to serve this purpose.

Von Neumann and Morgenstern’s uniqueness argument and center of gravity opera-
tion are the central elements of their utility theory which is formalized in the axioms of 
[53, §3.6]. This theory is the basis of game theory which, in turn, was to serve as the 
mathematical foundation of economic theory. Elaborating upon von Neumann and 
Morgenstern’s concepts, Stevens [62] proposed a uniqueness-based classification of 

t p q s×+=
q 0> t q s×= q 0>
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“scale type” and the focus on the issues of the possibility of measurement of psycholog-
ical variables and the applicability of mathematical operations to scale values has 
moved to the construction of “interval” scales, i.e. scales that are unique up to an addi-
tive constant and a positive multiplicative constant.

2.2 Applicability of Operations on Scale Values vs. Scale Operations
Consider the applicability of the operations of addition and multiplication to scale val-
ues for a fixed scale, that is, operations that express facts such as “the weight of an 
object equals the sum of the weights of two other ones” (which corresponds to addi-
tion: ) and “the weight of a given object is two and a half times the 
weight of another” (which corresponds to multiplication: ).

It is important to emphasize the distinction between the application of the opera-
tions of addition and multiplication to scale values for a fixed scale (for example 

) as opposed to what appear to be the same operations when they 
are applied to an entire scale whereby an equivalent scale is produced (for example 

 where s and t are two scales and p, q are numbers). In the case of scale 
values for a fixed scale, the operations of addition and multiplication are applied to ele-
ments of the mathematical system M and the result is another element of M. In the 
case of operations on entire scales, addition or multiplication by a number are applied 
to an element of the set  of all possible scales and the result is another 
element of S rather than M. These are different operations because operations are func-
tions and functions with different domains or ranges are different. 

In the case of “interval” scales where the uniqueness of the set of all possible scales 
is characterized by scale transformations of the form , it cannot be con-
cluded that the operations of addition and multiplication are applicable to scale values 
for a fixed scale such as . It might be claimed that the characteriza-
tion of scale uniqueness by  implies the applicability of addition and mul-
tiplication to scale values for fixed scales, but this claim requires proof. There is no such 
proof, nor such claim, in the literature because this claim is false: Consider the auto-
morphisms of the group of integers under addition. The group is a model of itself 
( ), and scale transformations are multiplicative: . However, by 
definition, the operation of multiplication which is defined on the set of scales is not 
defined on the group M.

3 The Principle of Reflection
Consider the measurement of length and suppose that we can only carry out ordinal 
measurement on a set of objects, that is, for any pair of objects we can determine which 
one is longer or whether they are equal in length (in which case we can order the 
objects by their length). This may be due to a deficiency with the state of technology 
(appropriate tools are not available) or with the state of science (the state of knowledge 
and understanding of the empirical or mathematical system is insufficient). We can still 
construct scales (functions) that map the empirical objects into the real numbers but 
although the real numbers admit many operations and relations, the only relation on 

s a( ) s b( ) s c( )+=
s a( ) 2.5 s b( )×=

s a( ) s b( ) s c( )+=

t p q s×+=

S s t …, ,{ }=

t p q s×+=

s a( ) s b( ) s c( )+=
t p q s×+=

E M= t 1±( ) s×=
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ordinal scale values that is relevant to the property under measurement is the relation 
of order. Specifically, the operations of addition and multiplication can be carried out 
on the range of such scales since the range is a subset of the real numbers, but such 
operations are extraneous because they do not reflect corresponding empirical opera-
tions. Extraneous operations may not be carried out on scale values — they are irrele-
vant and inapplicable; their application to scale values is a modelling error. 

The Principle of Reflection is an essential element of modelling that states that opera-
tions within the mathematical system are applicable if and only if they reflect corre-
sponding operations within the empirical system. In technical terms, in order for the 
mathematical system to be a valid model of the empirical one, the mathematical sys-
tem must be homomorphic to the empirical system (a homomorphism is a structure-
preserving mapping). A mathematical operation is a valid element of the model only if 
it is the homomorphic image of an empirical operation. Other operations are not appli-
cable on scale values.

By The Principle of Reflection, a necessary condition for the applicability of an opera-
tion on scale values is the existence of a corresponding empirical operation (the homo-
morphic pre-image of the mathematical operation). That is, The Principle of Reflection
applies in both directions and a given operation is applicable in the mathematical 
image only if the empirical system is equipped with a corresponding operation. 

4 The Ordinal Utility Claim in Economic Theory
Preference theory, which plays a fundamental role in decision theory, plays the same 
role under the name utility theory (see §9.4) in economic theory. We now show that in 
the context of economic theory, utility theory is founded on errors that have not been 
detected by decision theorists or other scholars. In his Manual of Political Economy, 
Pareto claims that “the entire theory of economic equilibrium is independent of the 
notions of (economic) utility” [54, p. 393]. More precisely, it is claimed that ordinal util-
ity scales are sufficient to carry out Pareto’s development of economic equilibrium. 
This claim is surprising considering that Pareto’s Manual is founded on the notions of 
differentiable utility scales (by different names such as “ophelimity” and “tastes”). This 
claim is also surprising because a parallel claim stating that ordinal temperature scales are 
sufficient to carry out partial differentiation in thermodynamics is obviously false. It is even 
more surprising that this false claim has escaped notice for so long and is repeated in 
current economic literature. 

Relying on Pareto’s error, Hicks [36, p. 18] states that “The quantitative concept of 
utility is not necessary in order to explain market phenomena.” With the goal of estab-
lishing a Logical foundation of deductive economics — having identified the Need for a theory 
consistently based upon ordinal utility — (see the titles of Chapter I’s sections in Value and 
Capital [36]) he proceeds “to undertake a purge, rejecting all concepts which are 
tainted by quantitative utility” [36, p. 19]. In essence, Hicks claims that wherever utility 
appears in economic theory, and in particular in Pareto’s theory which employs partial 
differentiation, it can be replaced by ordinal utility (see also the title The ordinal charac-
ter of utility [36, Chapter I, §4]).
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Neither Pareto, who did not act on his claim, nor Hicks, who did proceed to purge 
“quantitative utility” from economic theory, provide rigorous mathematical justification 
for this claim and it seems that authors who repeat this claim rely on an incorrect argu-
ment in Samuelson’s Foundations of Economic Analysis [58, pp. 94—95]. 

4.1 Ordinal Utility
An ordinal empirical system E is a set of empirical objects together with the relation of 
order, which characterize a property under measurement. A mathematical model M of 
an ordinal empirical system E is an ordered set where the order in M reflects the order 
in E. A scale s is a homomorphism from E into M, i.e. a mapping of the objects in E
into the objects in M that reflects the order of E into M. In general, the purpose of 
modelling E by M is to enable the application of mathematical operations on the ele-
ments of the mathematical system M and operations that are not defined in E are not 
applicable in M. In the case of ordinal systems the mathematical image M of the empir-
ical system E is equipped only with order and the operations of addition and multipli-
cation are not applicable in M. In other words, since, by definition, in ordinal systems 
only order is defined (explicitly — neither addition nor multiplication is defined), addi-
tion and multiplication are not applicable on ordinal scale values and it follows that the 
operation of differentiation is not applicable on ordinal scale values because differentia-
tion requires that the operations of addition and multiplication be applicable.

In summary, if  is an ordinal utility function it cannot be differentiated 
and conversely, a utility function that satisfies a differential condition cannot be an 
ordinal utility scale.

4.2 Optimality Conditions on Indifference Surfaces 
In [36, p. 23] Hicks says that “Pure economics has a remarkable way of producing rab-
bits out of a hat” and that “It is fascinating to try to discover how the rabbits got in; for 
those of us who do not believe in magic must be convinced that they got in somehow.” 
The following is treated with only that minimal degree of rigor which is necessary to 
discover how this observation applies to the use of, supposedly ordinal, utility functions 
in the standard derivation of elementary equilibrium conditions. (A greater degree of 
rigor is necessary if other errors are to be avoided.) 

Consider the problem of maximizing a utility function  subject to a 
constraint of the form  where the variables  represent quan-
tities of goods. Differentiating the Lagrangean  we have 

 for 

which implies  for all i, j, and therefore

. (1)

u x1 … xn, ,( )

u x1 … xn, ,( )
g x1 … xn, ,( ) b= x1 … xn, ,

L u λ g b–( )–=

xi∂
∂u λ

xi∂
∂g

– 0= i 1 … n, ,=

xi∂
∂u

xi∂
∂g÷ λ

xj∂
∂u

xj∂
∂g÷= =

xj∂
∂u

xi∂
∂u÷

xj∂
∂g

xi∂
∂g÷=
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Equation (1) is a tangency condition because, in common notation, 

(2)

holds on a surface where a function  is constant. Since applying this nota-
tion to Equation (1) yields 

,

it is preferable to use the explicit notation 

to indicate that the differentiation is performed on an indifference surface of the func-
tion u at the point x. This derivative depends on the function u as well as the point x; 
the function u is not “eliminated” in this expression. In general, at an arbitrary point x
we expect 

but at the solution point  Equation (1) implies 

 for all i, j (3)

which, together with the constraint , is a system of equations for the 
n unknowns . 

In the special case of a budget constraint  where  is the 
price of good i,

xj∂
∂xi

xj∂
∂f

xi∂
∂f÷⎝ ⎠

⎛ ⎞–=

f x1 … xn, ,( )

xj∂
∂xi

xj∂
∂xi=

xj∂
∂xi

x

u

xj∂
∂xi

x

u

xj∂
∂xi

x

g

≠

x∗

xj∂
∂xi

x∗

u

xj∂
∂xi

x∗

g

=

g x1 … xn, ,( ) b=

x∗ x1
∗ … xn∗, ,( )=

p1x1 … pnxn+ + b= pi

xj∂
∂xi–

x

g

xj∂
∂g

xi∂
∂g÷

pj

pi
----= =
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and the solution satisfies 

 and  for all i, j. (4)

When the number of variables is greater than two, this system of equations cannot 
be solved by the method of indifference curves, i.e. by using two-dimensional diagrams, 
because the left hand sides of the equations in (4) depend on all the n unknowns. For 
example, we can construct a family of indifference curves in the  plane where 
the variables  are fixed, but  must be fixed at the unknown solution 
values . To emphasize, with each fixed value of the variables  is 
associated a family of  indifference curves. To solve for  by the method 
of indifference curves, it is necessary to construct the specific family of indifference 
curves that corresponds to the solution values , but these values are not 
known. Noting again that the utility function u is not eliminated in Equation (4) and 
that this equation was derived using the operation of differentiation which is not appli-
cable on ordinal utility functions, we conclude that Hicks’s “Generalization to the case 
of many goods” [36, §9] has no basis. 

Returning to Equation (2), we note that  and  have 
the same indifference surfaces (but with different derivatives) and, by the chain rule, if F
and  are both differentiable then 

(5)

so that this partial derivative is independent of F. However, since both F and  are 
assumed to be differentiable, Equation (5) does not imply that  is ordinal.

4.3 Pareto’s Claim
In the Appendix to his Manual of Political Economy [54, pp. 392—394] Pareto considers 
the indifference surfaces of the utility  of the goods . Tak-
ing for granted the applicability of the operation of differentiation, if  “is 
differentiated with I taken as a constant,” Pareto obtains the equation (numbered (8) in 
his Appendix)  independently of F. This equation is fol-
lowed by the statement that “An equation equivalent to the last mentioned could be 
obtained directly from observation.” Pareto then says that the latter equation (num-
bered (9) in his Appendix), , “contains nothing which 
corresponds to ophelimity, or to the indices of ophelimity” (where he uses the term 

p1x1
∗ … pnxn∗+ + b=

xj∂
∂xi

x1
∗ … xn∗, ,( )

u

–
pj

pi
----=

x1 x2,( )
x3 … xn, , x3 … xn, ,

x3
∗ … xn∗, , x3 … xn, ,

x1 x2,( ) x1
∗ x2

∗,

x3
∗ … xn∗, ,

f x1 … xn, ,( ) F f x1 … xn, ,( )( )

f x1 … xn, ,( )

xj∂
∂xi

x

F f( )

xj∂
∂xi

x

f

=

f
f

I Ψ x y z …, , ,( )= x y z …, , ,
I F Ψ( )=

0 Ψx dx Ψy dy Ψz dz …+ + +=

0 qx dx qy dy qz dz …+ + +=
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ophelimity for utility) and concludes that “the entire theory of economic equilibrium is 
independent of the notions of (economic) utility” [54, p. 393]. 

This conclusion has no basis: “direct observation” does not constitute mathematical 
proof; Pareto does not define the variables ; and it is not clear what it is 
which he directly observes. On the contrary, if Pareto’s equation 

contains nothing which corresponds to utility, it cannot be equivalent to his equation 

which characterizes utility indifference surfaces. As pointed out in §4.1, since  
satisfies a differential condition it cannot be an ordinal utility scale. 

4.4 Samuelson’s Explanation
Samuelson defines an ordinal utility scale  in Equations (6)-(8) of [58, p. 
94] and states, correctly, that any function  where  reflects the 
same order. However, this observation does not imply that  is ordinal. On the con-
trary, since this observation is based on differentiating both F and , it is only valid if  
is differentiable in which case it cannot be ordinal. 

The paragraph that follows this observation in [58, p. 94] consists of one sentence: 
“To summarize, our ordinal preference field may be written [here Samuelson repeats 
his Equation 9 as Equation 10] where  is any one cardinal index of utility.” Recalling 
Hicks’s comment that “It is fascinating to try to discover how the rabbits got in,” this 
sentence is remarkable, for “those of us who do not believe in magic” will note that the 
ordinal utility at the beginning of the sentence has metamorphosed into cardinal utility 
at the sentence’s end. Note that Samuelson does not define the concept of “cardinal” 
utility, nor does it appear to be defined elsewhere in the literature.

The concepts of tangents, partial derivatives, and differentials that follow on the 
next page (Samuelson [58, p. 95]) are applicable only if the utility scales in question are 
differentiable in which case they cannot be ordinal. Additional analysis of the rest of 
Samuelson’s explanation is not necessary, except that it should be noted that the mar-
ginal utilities that appear in Equation (25) that follows on [58, p. 98] are partial deriva-
tives of a utility function. If the derivatives of this utility function, i.e. the marginal 
utilities, exist it cannot be ordinal. Finally, we note that Samuelson’s use of preference 
and utility as synonyms is consistent with the observations in §9.4 of this chapter. 

4.5 Counter-Examples

Define an ordinal utility function of two variables by  if x or y is a rational 

number, and  otherwise. Under the budget constraint  
the tangency condition 

qx qy qz …, , ,

0 qx dx qy dy qz dz …+ + +=

0 Ψx dx Ψy dy Ψz dz …+ + +=

Ψ

ϕ x1 … xn, ,( )
U F ϕ( )= F ′ ϕ( ) 0>

ϕ
ϕ ϕ

ϕ

u x y,( ) xy=

u x y,( ) x3y= p1x p2y+ b=
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does not hold because (regardless of how the “or” in the definition of  is inter-
preted) the left hand side of this equation is undefined — the derivative does not exist. 

More generally, given any finite ordinal system, there exist smooth ordinal utility 
scales  and  such that

(6)

which means that the marginal substitution rate  is undefined at x. These counter-

examples show that ordinal utility scales are not sufficient for the derivation of the 
standard equilibrium conditions of consumer demand theory. In current economic the-
ory (see e.g. Chapter 3 in Mas-Colell et al. [46]), the claim that ordinal utility theory is 
sufficient to establish the existence of the partial derivatives that define marginal substi-
tution rates is based on errors. Ordinal systems do not constitute vector spaces; vector 
differences and norms are undefined in such systems; and there is no basis for the con-
cepts of convexity, continuity, and differentiation in ordinal systems (see e.g. Definition 
3.B.3 in Mas-Colell et al. [46, p. 42]).

5 Shortcomings of Utility Theory
Campbell’s argument against the possibility of measurement of psychological variables 
can be rejected on the basis of von Neumann and Morgenstern’s uniqueness argument 
but constructing utility scales that are immune from Campbell’s argument is not equiv-
alent to establishing that psychological variables can be measured. In fact, as we show 
in §5.2, the operations of addition and multiplication do not apply to utility scale val-
ues. This and additional shortcomings of utility theory render it unsuitable to serve as 
the foundation for the application of mathematical methods in decision theory or in 
economic theory. 

5.1 Von Neumann and Morgenstern’s Utility Theory
The fundamental role of preference modelling in game theory was recognized by von 
Neumann and Morgenstern (see [53, §§3.5—3.6]) but their treatment of this difficult 
problem which is the basis for later developments in “modern utility theory” (cf. Fish-
burn [31, §1.3] and Coombs et al. [25, p. 122]), suffers from multiple flaws and this the-
ory cannot serve as a foundation for any scientific theory.

In essence, von Neumann and Morgenstern study a set of objects A equipped with 
an operation (i.e. a function) and the relation of order (which is not an operation) that 
satisfy certain assumptions. The operation is of the form , where a and b are 
objects in A,  is a real number, and  is an object in A. Their main result 
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is an existence and uniqueness theorem for scales (homomorphisms) that reflect the 
structure of the set A into a set B equipped with order and a corresponding operation 

 where , , and . 

5.2 Addition and Multiplication Are Not Applicable to Utility Scales
The Principle of Reflection implies that the operations of addition and multiplication are 
not applicable to utility scales despite their “interval” type. These operations are not 
applicable to von Neumann and Morgenstern’s utility model because their axioms 
include one compound empirical ternary operation (i.e. the “center of gravity” operation 
which is a function of three variables) instead of the two binary operations of addition 
and multiplication (each of which is a function of two variables). Addition and multipli-
cation are not enabled on utility scale values in later formulations as well because none 
of these formulations is based on two empirical operations that correspond to addition 
and multiplication. It should be noted that the goal of constructing the utility frame-
work was to enable the application of mathematical operations rather than to build a 
system with a certain type of uniqueness. 

Although modern utility models (e.g. Luce and Raiffa [44, §2.5], Fishburn [31, pp. 
7—9], Coombs et al. [25, pp. 122—129], French [32, Ch. 5]) are not equivalent to von 
Neumann and Morgenstern’s model, The Principle of Reflection implies that all utility 
models are weak: despite the fact that they produce “interval” scales, none of these 
models enables the operations of addition and multiplication.

5.3 Barzilai’s Paradox: Utility’s Intrinsic Contradiction

As an abstract mathematical system, von Neumann and Morgenstern’s utility axioms 
are consistent. However, while von Neumann and Morgenstern establish the existence
and uniqueness of scales that satisfy these axioms, they do not address utility scale con-
struction. This construction requires a specific interpretation of the empirical operation 
in the context of preference measurement (in terms of lotteries) and although the axi-
oms are consistent in the abstract, the interpretation of the empirical utility operation creates 
an intrinsic contradiction. Utility theory constrains the values of utility scales for lotteries 
while the values of utility scales for prizes are unconstrained. The theory permits lotter-
ies that are prizes (cf. Luce and Raiffa’s “neat example” [44, pp. 26—27]) and this leads 
to a contradiction since an object may be both a prize, which is not constrained, and a 
lottery which is constrained. In other words, utility theory has one rule for assigning 
values to prizes and a different, conflicting, rule for assigning values to lotteries. For a 
prize which is a lottery ticket, the conflicting rules are contradictory. For a numerical 
example see Barzilai [17 or 19].

5.4 Utility Theory is Neither Prescriptive Nor Normative
Coombs et al. [25, p. 123]) state that “utility theory was developed as a prescriptive the-
ory.” This claim has no basis since von Neumann and Morgenstern’s utility theory as 
well as its later variants (e.g. Luce and Raiffa [44, §2.5], Fishburn [31, pp. 7—9], Coombs 
et al. [25, pp. 122—129], French [32, Ch. 5], Luce [42, p. 195]) are mathematical theo-
ries. These theories are of the form , that is, if the assumptions P hold then the 
conclusions Q follow. In other words, these theories are not of the form “Thou Shalt 

g α s a( ) s b( ), ,( ) a s a( )→ b s b( )→ f α a b, ,( ) g α s a( ) s b( ), ,( )→

P Q→
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Assume P” but rather “if you assume .” Since mathematical theories do not dictate to 
decision makers what sets of assumptions they should satisfy, the claim that utility the-
ory is prescriptive has no basis in mathematical logic nor in modern utility theory. 

Howard says that a normative theory establishes norms for how things should be 
(In Praise of the Old Time Religion [38, p. 29]) and appears to suggest that decision the-
ory says how you should act in compliance with von Neumann and Morgenstern’s 
assumptions [53, p. 31]. His comments on “second-rate thinking” and education [38, p. 
30] seem to indicate that he believes that those who do not share his praise for the old 
time utility religion need to be re-educated. In the context of logic and science this 
position is untenable — mathematical theories do not dictate assumptions to decision 
makers. Furthermore, educating decision makers to follow flawed theories is not a rem-
edy for “second-rate thinking.” Flawed theories should be corrected rather than be 
taught as the norm.

Unfortunately, according to Edwards [28, pp. 254—255], Howard is not alone. 
Edwards reports as editor of the proceedings of a conference on utility theories that 
the attendees of the conference unanimously agreed that the experimental and obser-
vational evidence has established as a fact the assertion that people do not maximize 
“subjective expected utility” and the attendees also unanimously stated that they con-
sider “subjective expected utility” to be the appropriate normative rule for decision 
making under risk or uncertainty. These utility theorists are saying that although deci-
sion makers reject the assumptions of the mathematical theory of utility, they should 
accept the conclusions which these assumptions imply. This position is logically unten-
able.

5.5 Von Neumann and Morgenstern’s Structure is Not Operational
The construction of utility functions requires the interpretation of the operation 

 as the construction of a lottery on the prizes  with probabilities 
 respectively. The utility of a prize a is then assigned the value  where 

,  and . 
In order for  to be an operation, it must be a single-valued function. 

Presumably with this in mind, von Neumann and Morgenstern interpret the relation of 
equality on elements of the set A as true identity: in [53, A.1.1-2, p. 617] they remark in 
the hope of “dispelling possible misunderstanding” that “[w]e do not axiomatize the 
relation =, but interpret it as true identity.” If equality is interpreted as true identity, 
equality of the form  cannot hold when a is a prize since a lottery and 
a prize are not identical objects. Consequently, von Neumann and Morgenstern’s inter-
pretation of their axioms does not enable the practical construction of utility functions.

Possibly for this reason, later variants of utility theory (e.g. Luce and Raiffa [44]) 
interpret equality as indifference rather than true identity. This interpretation requires 
the extension of the set A to contain the lotteries in addition to the prizes. In this 
model, lotteries are elements of the set A rather than an operation on A so that this 
extended set is no longer equipped with any operations but rather with the relations of 
order and indifference (see e.g. Coombs et al. [25, p. 122]). This utility structure is not 
homomorphic (and therefore is not equivalent) to von Neumann and Morgenstern’s 
structure and the utility functions it generates are weak (i.e. do not enable the opera-

P

f α a1 a0, ,( ) a1 a0,
α 1 α–, α
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tions of addition and multiplication) and only enable the relation of order despite their 
“interval” type of uniqueness.

6 Shortcomings of Game Theory
As a branch of decision theory, game theory is an operations research discipline that 
was founded by von Neumann and Morgenstern [53] with the aim of serving as the 
proper instrument with which to develop a theory of economic behavior. Unfortu-
nately, game theory is founded on multiple errors and while its utility foundations can 
be replaced with proper ones, other fundamental game theory errors must be cor-
rected if it is to serve as the mathematical foundation of economic theory. In particular, 
preference measurement plays a fundamental role, and is necessary in order to intro-
duce the real numbers and operations on them, in game theory and economics and it is 
not possible to escape the need to construct preference functions by assuming that 
payoffs are in money units and that each player has a utility function which is linear in 
terms of money. The mathematical operations of game theory are performed on pref-
erences for objects rather than on empirical objects, preference scales are not unique, 
and preference spaces are not vectors spaces.

6.1 Undefined Sums

The expression  which represents the sum of coalition values in von Neu-
mann and Morgenstern’s definition of the characteristic function of a game has no 
basis since, by The Principle of Reflection, addition is undefined for utility or value scales. 
The sum of points on a straight line in an affine geometry, which is the correct model 
for preference measurement (see §7.1), is undefined as well. For the same reasons, the 
sum of imputations, which are utilities, is undefined. In consequence, throughout the 
literature of game theory, the treatment of the topic of the division of the “payoff” 
among the players in a coalition has no foundation.

6.2 The Utility of a Coalition
The definition of the characteristic function of a game depends on a reduction to “the 
value” of a two-person (a coalition vs. its complement) game. In turn, the construction 
of a two-person-game value depends on the concept of expected utility of a player. The 
reduction treats a coalition, i.e. a group of players, as a single player but there is no 
foundation in the theory for the utility of a group of players.

6.3 “The” Value of a Two-Person Zero-Sum Game Is Ill-Defined
To construct von Neumann and Morgenstern’s characteristic function, a coalition and 
its complement are treated as players in a two-person zero-sum game, and the coali-
tion is assigned its “single player” value in this reduced game. However, the concept of 
“the” value of two-person zero-sum game theory is not unique and consequently is ill-
defined.

The minimax theorem which states that every two-person zero-sum game with 
finitely many pure strategies has optimal mixed strategies is a cornerstone of game the-
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ory. Given a two-person zero-sum game, denote by x* and y* the minimax optimal 
strategies and by u the utility function of player 1. Utility functions are not unique and 
for any p and positive q, u is equivalent to  but since the minimax optimal 
strategies do not depend on the choice of p and q, x* and y* are well-defined. However, 
the value of the game varies when p and q vary so that it depends on the choice of the 
utility function u and given an arbitrary real number v, the numbers p and q can be 
chosen so that the value of the game equals v. As a result, the concept of “the” value of 
a game is ill-defined and any game theoretic concept that depends on “the” value of a 
game is ill-defined as well.

6.4 The Characteristic Function of Game Theory is Ill-Defined
The construction of the characteristic function of a game is ignored in the literature 
where it is assumed that a characteristic function is “given” and conclusions are drawn 
from its numerical values. This is not surprising since without specifying whose values 
are being measured the characteristic function of a game cannot be constructed. 

The assignment of values to objects such as outcomes and coalitions, i.e. the con-
struction of value functions, is a fundamental concept of game theory. Value (or utility, 
or preference) is not a physical property of the objects being valued, that is, value is a 
subjective (or psychological, or personal) property. Therefore, the definition of value
requires specifying both what is being valued and whose values are being measured.

Game theory’s characteristic function assigns values to coalitions but von Neu-
mann and Morgenstern do not specify whose values are being measured in the con-
struction of this function. Since it is not possible to construct a value (or utility) scale of 
an unspecified person or a group of persons, game theory’s characteristic function is 
not well-defined. All game theory concepts that depend on values where it is not 
specified whose values are being measured are ill-defined (see also Barzilai [9]). This 
includes the concept of imputations, von Neumann and Morgenstern’s solution of a 
game, and Shapley’s value [60, 34, and Chapter 3 in 4] in all its variants and generaliza-
tions (e.g. McLean [47], Monderer and Samet [52], and Winter [63]). Moreover, since 
the current definition of an n-person game employs the ill-defined concept of the char-
acteristic function (see e.g. Monderer and Samet [52, p. 2058]), the very definition of a 
game has no foundation.

6.5 The Essential Role of Preference
Under the heading “The Mathematical Method in Economics” von Neumann and 
Morgenstern state in Theory of Games and Economic Behavior [53, §1.1.1] that the pur-
pose of the book was “to present a discussion of some fundamental questions of eco-
nomic theory.” The role of preference measurement in game theory is essential because the 
outcomes of economic activity are empirical objects rather than real numbers such as 

 and the application of mathematical operations such as addition and multiplication 
requires the mathematical modelling of economic systems by corresponding mathe-
matical systems. In other words, the purpose of preference measurement is to introduce the 
real numbers and operations on them in order to enable the application of The Mathematical 
Method. 

p q u×+
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Consider Guild’s statement in support of the position that mathematical operations 
are not applicable to non-physical variables (his position as well as the opposing posi-
tion were based on incorrect arguments concerning the applicability of mathematical 
operations to non-physical variables — see §7.1) as summarized in Ferguson et al. [30, p. 
345] in the context of measurement of sensation: 

I submit that any law purporting to express a quantitative relation between sen-
sation intensity and stimulus intensity is not merely false but is in fact meaning-
less unless and until a meaning can be given to the concept of addition as 
applied to sensation. No such meaning has ever been defined. When we say 
that one length is twice another or one mass is twice another we know what is 
meant: we know that certain practical operations have been defined for the 
addition of lengths or masses, and it is in terms of these operations, and in no 
other terms whatever, that we are able to interpret a numerical relation 
between lengths and masses. But if we say that one sensation intensity is twice 
another nobody knows what the statement, if true, would imply.

Note that the property (length, mass, etc.) of the objects must be specified in order for 
the mathematical operations to be applicable and that addition and multiplication are 
applied on lengths and masses of objects. It is not possible to “add objects” without 
knowing whether what is being added is their mass, length, temperature, etc. Observ-
ing that preference is the only property of relevance in the context of the mathematical 
foundations of game theory, we conclude that preference measurement is not a cos-
metic issue but a fundamental one in this context. 

6.6 Implications
The fact that preference modelling is of the essence in game theory implies that much of the 
theory is in error. Under the title “What is game theory trying to accomplish?” 
Aumann [5] says that game theory is not a branch of abstract mathematics but is 
rather motivated by and related to the world around us. As pointed out above, eco-
nomic transactions are not performed in order to attain as an outcome the number . 
Stated differently, the outcome of a real-world economic transaction is seldom a real 
number. One therefore cannot simply “assume” (see e.g. definition 2.3 in Aumann [4]) 
that the outcome of an economic transaction which is modelled as a play of a game is 
a numerical payoff  function. The only way to introduce the real numbers, and thereby 
The Mathematical Method, into game theory is through the construction of preference 
functions which represent preference for empirical objects including outcomes of 
games. As we shall see in §6.7, it is not possible to escape the need to construct prefer-
ence functions by “assuming that payoffs are in money units and that each player has a 
utility function which is linear in terms of money” (Aumann [4, p. 106]). Note that this 
statement implies that utility is a property of money so that in the fundamental struc-
ture of preference modelling (see §2), money, in the form of a $20 bill, or twenty coco-
nuts, cocoa beans, dried fish, salt bars, or a beaver pelt (cf. Shubik [61, p. 361]), is an 
object rather than a property of empirical objects. In the context of mathematical mod-
elling the distinction between objects and properties of objects is fundamental. (In 
addition to these considerations, the mathematical operations of game theory must be 
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performed on the preferences of the players because what matters to them is their pref-
erences for the outcomes rather than the physical outcomes.)

Having concluded that the mathematical operations of game theory are performed 
on preferences for objects rather than on empirical objects, recall that (i) preference 
functions are not unique (they are unique up to affine transformations), and (ii) the sum 
of values of a preference function is undefined (see §7.1). 

6.7 On “Utility Functions that Are Linear in Money” 
Consider again the assumption that “payoffs are in money units and that each player 
has a utility function which is linear in terms of money” (Aumann [4, p. 106]). In addi-
tion to the obvious reasons for rejecting this assumption (e.g. the St. Petersburg Para-
dox which implies that this is an unrealistic assumption; it is also necessary to make the 
even more unrealistic assumption that the additive and multiplicative constants in the 
players’ utility scales are all identical) we re-emphasize that money is not a property of 
objects and preference functions are unique up to affine rather than linear transforma-
tions. This implies that in the case of monetary outcomes it is still necessary to con-
struct the decision maker’s preference function for money.

It is correct to say that a given decision maker (who must be identified since prefer-
ence is a subjective property) is indifferent between the objects A and B where B is a 
sum of money, which means that  where  is the decision maker’s pref-
erence function. However, the statement that the outcome of a play is the object A and 

, requires the determination of the preference value  and, in addi-
tion,  as well as the identification of the object B for which . It fol-
lows that this indirect and more laborious procedure does not eliminate the need to 
construct the decision maker’s preference function and game theory cannot be divorced 
from preference modelling. It follows that there is no escape from the fact that utility sums 
are undefined. 

6.8 The Minimax Solution of Two-Person Zero-Sum Games
In Barzilai [7 and 8] we give examples that show that even for repeated games, the 
minimax solution of two-person zero-sum game theory prescribes to the players “opti-
mal” strategies that cannot be described as conservative or rational. In addition, since 
the minimax probabilities do not depend on the outcomes of the game (they only 
depend on the numerical payoffs which are associated with the outcomes), they are 
invariant with respect to a change of payoff  unit. For example, denote the outcomes of 
a two-person zero-sum game by 

(7)

where player 1 can choose between R1 and R2 (rows) and player 2 between C1 and 
C2 (columns) and consider the case where player 1’s utility values for these outcomes 
are given by 

f A( ) f B( )= f

f A( ) f B( )= f A( )
f B( ) f A( ) f B( )=

A B
C D
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. (8)

According to the minimax rule, player 1 is to play R1 or R2 with probabilities (.75, .25) 
regardless of whether the numbers in this game represent the payoffs in cents, dollars, 
euros, millions of dollars, billions of dollars, or any other unit. Probabilities cannot be 
assigned to scale values on an indefinite scale; when the scale is changed, the probabil-
ities assigned to scale values must change. Denote by x the probability that the temper-
ature in a given process will reach 20 degrees. Then x must depend on the choice of 
the temperature scale — it cannot be the case that the temperature will reach 20 
degrees on the Celsius scale, the Fahrenheit scale, and any arbitrary other scale with 
the same probability. In the minimax solution of two-person zero-sum games choice 
probabilities are divorced from choice consequences because probabilities are assigned 
to indefinite scale values. This is a fundamental error which indicates that this problem 
is formulated incorrectly. 

The following should be noted: Aumann tells us in the General Summary and Con-
clusions of his 1985 paper entitled “What is Game Theory Trying to Accomplish?” [5, 
p. 65] that “Game-theoretic solution concepts should be understood in terms of their 
applications, and should be judged by the quantity and quality of their applications.” 
More recently, in their paper entitled “When All is Said and Done, How Should You 
Play and What Should You Expect?” Aumann and Dreze [6, p. 2] tell us that seventy-
seven years after it was born in 1928, strategic game theory has not gotten beyond the 
optimal strategies which rational players should play according to von Neumann’s 
minimax theorem of two-person zero-sum games; that when the game is not two-per-
son zero-sum none of the equilibrium theories tell the players how to play; and that 
the “Harsanyi-Selten selection theory does choose a unique equilibrium, composed of a 
well-defined strategy for each player and having a well-defined expected outcome. But 
nobody — least of all Harsanyi and Selten themselves — would actually recommend 
using these strategies.” 

This implies that while the meaning of n-person “solutions” is in question, game 
theorists universally accept the minimax strategy as a reasonable (in fact, the only) solu-
tion for rational players in two-person zero-sum games. Consistent with this view is 
Aumann’s characterization of the minimax theorem as a vital cornerstone of game the-
ory in his survey of game theory [3, p. 6], yet this solution, too, is a flawed game theory 
concept.

6.9 Errors Not Corrected
It has been suggested that the errors uncovered here have been corrected in recent 
times, but this is not the case. In the Preface to his 1989 Lectures on Game Theory [4], 
Aumann states that its material has not been superseded. This material includes a dis-
cussion of game theory without its preference underpinning, the use of undefined 
sums, ill-defined concepts, and additional errors.

For example, the “payoff  functions”  in part (3) of Definition 2.3 in Aumann [4] 
are not unique and there is no basis for assuming that the outcomes of games are real 
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numbers. Moreover, these functions are unique up to additive and multiplicative con-
stants which are not independent of the index i. As a result, the very definition of a 
game has no basis even in the simplest two-person case. In the absence of the property 
of preference, no operations are applicable in game theory but when preference is 
modelled the sum of values of a preference function is undefined. Such sums appear in 
Aumann [4] (Definition 3.9 p. 28, Definitions 4.3 and 4.6 p. 38), and throughout game 
theory’s literature. 

While Aumann’s discussion of Shapley’s value ignores utility theory altogether, 
Hart introduces his 1989 Shapley Value [34] as an evaluation, “in the [sic] participant’s 
utility scale,” of the prospective outcomes. He then refers explicitly to utility theory and 
to measuring the value of each player in the game. Note that in addition to the use of 
undefined sums and ill-defined concepts in the context of Shapley’s value, it is not clear 
whether Shapley’s value is intended to represent the evaluation of prospective out-
comes of a game by a player or the evaluation of the players themselves (not surpris-
ingly, the question who evaluates the players is not addressed in the literature). 

More recently Hart (2004, [33, pp. 36—37]), denoting by  the utility of an out-
come to player i, refers to the set of utilities as the set of feasible payoff  vectors and uses 

the undefined sum of these utilities  in the definition of a “transferable utility” 

game. As pointed out earlier, utility spaces are not vector spaces and utility sums are 
undefined. 

7 Reconstructing the Foundations

7.1 Proper Scales — Straight Lines
In order to enable the “powerful weapon of mathematical analysis” to be applied to 
any scientific discipline it is necessary, at a minimum, to construct models that enable 
the operations of addition and multiplication, for without these operations the tools of 
linear algebra and elementary statistics cannot be applied. This construction, which 
leads to the well-known geometrical model of points on a straight line, is based on two 
observations: 

• If the operations of addition and multiplication are to be enabled in the mathemati-
cal system M, these operations must be defined in M. The empirical system E must 
then be equipped with corresponding operations in order for M to be a model of E.

• Mathematical systems with an absolute zero or one are not homogeneous: these spe-
cial, distinguishable, elements are unlike others. On the other hand, since the exist-
ence of an absolute zero or one for empirical systems that characterize subjective 
properties has not been established, they must be modelled by homogeneous math-
ematical systems. 

Sets that are equipped with the operations of addition and multiplication, including 
the inverse operations of subtraction and division, are studied in abstract algebra and 
are called fields. The axioms that define fields are listed in §7.3. A field is a not a homo-
geneous system since it contains two special elements, namely an absolute zero and an 
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absolute one which are the additive and multiplicative identities of the field (in technical 
terms, they are invariant under field automorphisms). It follows that to model a subjec-
tive property by a mathematical system where the operations of addition and multipli-
cation are defined we need to modify a field in order to homogenize its special 
elements, i.e., we need to construct a homogeneous field. To homogenize the multiplica-
tive identity, we construct a one-dimensional vector space which is a partially homoge-
neous field (it is homogeneous with respect to the multiplicative identity but not with 
respect to the additive identity) where the elements of the field serve as the set of sca-
lars in the vector space. To homogenize the additive identity as well, we combine 
points with the vectors and scalars and construct a one-dimensional affine space, 
which is a homogeneous field, over the previously constructed vector space. The axi-
oms characterizing vector and affine spaces are listed in §7.3. The end result of this 
construction, the one-dimensional affine space, is the algebraic formulation of the 
familiar straight line of elementary (affine) geometry so that for the operations of addi-
tion and multiplication to be enabled on models that characterize subjective properties, 
the empirical objects must correspond to points on a straight line of an affine geome-
try. For details see §7.3, or the equivalent formulations in Artzy [2, p. 79], and Postnikov 
[55, pp. 46—47]. 

In an affine space, the difference of two points is a vector and no other operations 
are defined on points. In particular, it is important to note that the ratio of two points 
as well as the sum of two points are undefined. The operation of addition is defined on 
point differences, which are vectors, and this operation satisfies the group axioms listed in
§7.3. Multiplication of a vector by a scalar is defined and the result is a vector. In the 
one-dimensional case, and only in this case, the ratio of a vector divided by another 
non-zero vector is a scalar.

It follows that Campbell’s argument is correct with respect to the application of The 
Principle of Reflection and the identification of addition as a fundamental operation, but 
that argument does not take into account the role of the multiplication operation and 
the modified forms of addition and multiplication when the models correctly account 
for the degree of homogeneity of the relevant systems. Note also that it is not sufficient 
to model the operation of addition since, except for the natural numbers, multiplication 
is not repeated addition: In general, and in particular for the real numbers, multiplica-
tion is not defined as repeated addition but through field axioms. 

Since the purpose of modelling is to enable the application of mathematical opera-
tions, we classify scales by the type of mathematical operations that they enable. We 
use the terms proper scales to denote scales where the operations of addition and multi-
plication are enabled on scale values, and weak scales to denote scales where these oper-
ations are not enabled. This partition is of fundamental importance and we note that it 
follows from The Principle of Reflection that all the models in the literature are weak 
because they are based on operations that do not correspond to addition and multipli-
cation. 

7.2 Strong Scales — the Real Numbers
Proper scales enable the application of the operations of linear algebra but are not nec-
essarily equipped with the relation of order which is needed to indicate a direction on 
the straight line (for example, to indicate that an object is more preferable, or heavier, 
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or more beautiful than another). To construct proper ordered scales the underlying 
field must be ordered (for example, the field of complex numbers is unordered while 
the field of the rational numbers is ordered). For a formal definition of an ordered field 
see §7.3.1. 

Physics, as well as other sciences, cannot be developed without the mathematical 
“weapons” of calculus. For example, the basic concept of acceleration in Newton’s Sec-
ond Law is defined as a (second) derivative; in statistics, the standard deviation 
requires the use of the square root function whose definition requires the limit opera-
tion; and marginal rates of change, defined by partial derivatives, are used in econom-
ics. If calculus is to be enabled on ordered proper scales, the underlying field must be 
an ordered field where any limit of elements of the field is itself an element of the field. 
In technical terms, the underlying field must be complete (see McShane and Botts [48, 
Ch. 1, §5] for a formal definition). Since the only ordered complete field is the field of 
real numbers, in order to enable the operations of addition and multiplication, the rela-
tion of order, and the application of calculus on subjective scales, the objects must be 
mapped into the real, ordered, homogeneous field, i.e. a one-dimensional, real, ordered, 
affine space, and the set of objects must be a subset of points on an empirical ordered 
real straight line. We use the term strong models to denote such models and strong scales
to denote scales produced by strong models. 

The application of the powerful weapon of mathematical analysis requires a system 
in which addition and multiplication, order, and limits are enabled. The reason for the 
central role played by the real numbers in science is that the field of real numbers is the 
only ordered complete field.

7.3 The Axioms of an Affine Straight Line
7.3.1  Groups and Fields
A group is a set G with an operation that satisfies the following requirements (i.e. axi-
oms or assumptions):

• The operation is closed: the result of applying the operation to any two elements a
and b in G is another element c in G. We use the notation  and since the 
operation is applicable to pairs of elements of G, it is said to be a binary operation. 

• The operation is associative:  for any elements in G. 

• The group has an identity: there is an element e of G such that  for any ele-
ment a in G. 

• Inverse elements: for any element a in G, the equation  has a unique solution 
x in G. If , x is called the inverse of a. 

If  for all elements of a group, the group is called commutative. We re-
emphasize that a group is an algebraic structure with one operation and we also note 
that a group is not a homogeneous structure because it contains an element, namely its 
identity, which is unlike any other element of the group since the identity of a group G
is the only element of the group that satisfies  for all a in G.

c a bi=

a bi( ) ci a b ci( )i=

a ei a=

a xi e=
a xi e=

a bi b ai=

a ei a=
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A field is a set F with two operations that satisfy the following assumptions:

• The set F with one of the operations is a commutative group. This operation is 
called addition and the identity of the additive group is called zero (denoted ‘0’). 

• The set of all non-zero elements of F is a commutative group under the other oper-
ation on F. That operation is called multiplication and the multiplicative identity is 
called one (denoted ‘1’). 

• For any element a of the field, .

• For any elements of the field the distributive law  
holds.

Two operations are called addition and multiplication only if they are related to 
one another by satisfying the requirements of a field; a single operation on a set is not 
termed addition nor multiplication. The additive inverse of the element a is denoted 

, and the multiplicative inverse of a non-zero element is denoted  or . Sub-

traction and division are defined by  and . 
A field F is ordered if it contains a subset P such that if , then  and 

, and for any  exactly one of , or , or  holds.

7.3.2  Vector and Affine Spaces
A vector space is a pair of sets  together with associated operations as follows. 
The elements of F are termed scalars and F is a field. The elements of V are termed vec-
tors and V is a commutative group under an operation termed vector addition. These 
sets and operations are connected by the additional requirement that for any scalars 

 and vectors  the scalar product  is defined and satisfies, in 
the usual notation, , ,  and 

.
An affine space (or a point space) is a triplet of sets  together with associ-

ated operations as follows (see also Artzy [2] or Postnikov [55]). The pair  is a 
vector space. The elements of P are termed points and two functions are defined on 
points: a one-to-one and onto function  and a “difference” function 

 that is defined by . Note that this difference map-
ping is not a closed operation on : although points and vectors can be identified 
through the one-to-one correspondence , the sets of points and vectors are 
equipped with different operations and the operations of addition and multiplication 
are not defined on points. If , it is convenient to say that the difference 
between the points a and b is the vector v. Accordingly, we say that a point space is 
equipped with the operations of (vector) addition and (scalar) multiplication on point 
differences. Note that in an affine space no point is distinguishable from any other.

The dimension of the affine space  is the dimension of the vector space 
V. By a homogeneous field we mean a one-dimensional affine space. A homogeneous 
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a b× P∈ a F∈ a 0= a P∈ a– P∈

V F,( )

j k, F∈ u v, V∈ k v⋅ V∈
j k+( )v jv kv+= k u v+( ) ku kv+= jk( )v j kv( )=

1 v⋅ v=
P V F, ,( )

V F,( )

h : P V→
Δ : P 2 V→ Δ a b,( ) h a( ) h b( )–=

P
h : P V→

Δ a b,( ) v=

P V F, ,( )
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field is therefore an affine space  such that for any pair of vectors  
where  there exists a unique scalar  so that . In a homogeneous field 

 the set P is termed a straight line and the vectors and points are said to be 
collinear. Division in a homogeneous field is defined as follows. For , 

 means that  provided that . Therefore, in an affine space, the 
expression  for the points  where , is defi-
ned and is a scalar:

(9)

if and only if the space is one-dimensional, i.e. it is a straight line or a homogeneous 
field. When the space is a straight line,  (where ) 
means by definition that .

8 Measurement Theory
Beginning with Stevens [62] in 1946, measurement theory (which only deals with the 
mathematical modelling of measurement) has centred on issues of scale uniqueness 
rather than applicability of operations. As a result of the shift of focus from applicability 
of operations to uniqueness, the operations of addition and multiplication are not 
applicable on scale values for any scale constructed on the basis of this theory regard-
less of their “scale type” including “ratio” scales and “interval” scales (see §2.2 and Barz-
ilai [16]).

The focus of this theory was further narrowed when Scott and Suppes [59] in 1958 
adopted a system with a single set of objects as the foundation of the theory. Vector 
and affine spaces cannot be modelled by such systems because the construction of vec-
tor and affine spaces requires two or three sets respectively (the sets of scalars, vectors, 
and points). The operations on points, vectors and scalars are not closed operations: 
the difference of two points in an affine space is a vector rather than a point and, in a 
one-dimensional space, the ratio of two vectors is a scalar rather than a vector. Because 
proper scales for psychological variables are affine scales that are based on three sets, 
the operations of addition and multiplication are not enabled on scales constructed on 
the basis of classical measurement theory for any psychological variable for in this the-
ory no model is based on three sets. In particular, this is the case for preference which is 
the fundamental variable of decision theory. In consequence, the mathematical founda-
tions of decision theory must be replaced in order to enable the application of mathe-
matical operations including addition and multiplication.

The mathematical models in Foundations of Measurement (Krantz et al. [41] and 
Luce et al. [45]) and Roberts [56] are incorrect even for the most elementary variable 
of physics — position of points on an affine straight line. Derived from the model of posi-
tion, the correct model for length of segments (position differences) on this line is a one-
dimensional vector space. Likewise, “extensive measurement” (see e.g. Roberts [56, 
§3.2]) is not the correct model for the measurement of mass, another elementary phys-
ical variable. In essence, “extensive measurement” is the “vector half ” of a one-dimen-

P V F, ,( ) u v V∈,
v 0≠ α F∈ u αv=

P V F, ,( )
u v V∈,

u v⁄ α= u αv= v 0≠
Δ a b,( ) Δ c d,( )⁄ a b c d, , P∈, Δ c d,( ) 0≠

Δ a b,( )
Δ c d,( )
------------------- F∈

Δ a b,( ) Δ c d,( )⁄ α= a b c d, , P∈,
Δ a b,( ) αΔ c d,( )=
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sional vector space where multiplication and the scalars are lost. Not surprisingly, the 
second half of a one-dimensional affine space is then lost in the classical theory’s 
“difference measurement” where the scalars and vectors are both lost together with 
vector addition and scalar multiplication (see Roberts [56, §3.2—3.3]). In his 1992 paper 
[43, p. 80], Luce acknowledges the inadequacy of the models of the classical theory: 
“Everybody involved in this research has been aware all along that the class of homo-
geneous structures fails to include a number of scientifically important examples of 
classical physical measurement and, quite possibly, some that are relevant to the 
behavioral sciences.” But despite the evidence of inadequacy, these models have not 
been corrected in the classical theory.

In summary, the fundamental problem of applicability of mathematical operations 
to scale values has received no attention in the classical theory of measurement after 
1944; the theory does not provide the tools and insight necessary for identifying short-
comings and errors of evaluation and decision methodologies including utility theory 
and the Analytic Hierarchy Process; the basic model of Scott and Suppes [59] is 
flawed; and the operations of addition and multiplication are not applicable to scale 
values produced by any measurement theory model. 

9 Classical Decision Theory

9.1 Utility Theory
Barzilai’s paradox (see [§5.3 above], [17, §6.4.2] and [19, §4.2]) and the inapplicability 
of addition and multiplication on utility scale values imply that utility theory cannot 
serve as a foundation for any scientific discipline. In addition, von Neumann and Mor-
genstern’s utility theory was not developed as, and is not, a prescriptive theory neither 
is it a normative theory (see [17, §6.4.3]). Moreover, the interpretation by von Neu-
mann and Morgenstern of utility equality as a true identity precludes the possibility of 
indifference between a prize and a lottery which is utilized in the construction of utility 
scales while under the interpretation of utility equality as indifference the construction 
of lotteries is not single-valued and is therefore not an operation (see [17, §6.4.4]).

In the context of decision theory, despite the evidence to the contrary (e.g. Barzilai 
[17, §6.4.3] and [19]), utility theory is still treated by some as the foundation of decision 
theory and is considered a normative theory. Howard in particular refers to utility the-
ory in the non-scientific term “The Old Time Religion” [38] while elsewhere he refers 
to “Heathens, Heretics, and Cults: The Religious Spectrum of Decision Aiding” [37]. A 
recent publication entitled “Advances in Decision Analysis” [29] does not contribute to 
correcting these errors.

9.2 Undefined Ratios and Pairwise Comparisons
In order for the operations of addition and multiplication to be applicable, the mathe-
matical system M must be (i) a field if it is a model of a system with an absolute zero
and one, (ii) a one-dimensional vector space when the empirical system has an absolute 
zero but not an absolute one, or (iii) a one-dimensional affine space which is the case for 
all non-physical properties with neither an absolute zero nor absolute one. This implies 
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that for proper scales, scale ratios are undefined for subjective variables including prefer-
ence. In particular, this invalidates all decision methodologies that apply the operations 
of addition and multiplication to scale values and are based on preference ratios. For 
example, in the absence of an absolute zero for time, it must be modelled as a homoge-
neous variable and the ratio of two times (the expression ), is undefined. For the 
same reason, the ratio of two potential energies  is undefined while the ratios of the 
differences  and  are properly defined. We saw that the sum of von 
Neumann and Morgenstern’s utility scale values is undefined. Since the sum of two 
points in an affine space is undefined, the sum of proper preference scale values is 
undefined as well.

The expression  where a, b, c, d are points on an affine straight 
line and k is a scalar is used in the construction of proper scales. The number of points 
in the left hand side of this expression can be reduced from four to three (e.g. if ) 
but it cannot be reduced to two and this implies that pairwise comparisons cannot be 
used to construct preference scales where the operations of addition and multiplication 
are enabled. 

9.3 The Analytic Hierarchy Process
The Analytic Hierarchy Process (AHP, see Saaty [57]) is not a valid methodology. 
More than thirty years after the publication of Miller’s work in the 1960s [49—51], 
there is still no acknowledgement in the AHP literature (or elsewhere) of his contribu-
tion to decision theory in general and the AHP in particular. Miller was not a mathe-
matician and his methodology is based on mathematical errors although some of its 
non-mathematical elements are valuable. The AHP is based on these mathematical 
errors and additional ones (see Barzilai [15, 20—23] and the references there). 

Not surprisingly, these errors have been mis-identified in the literature and some of 
these errors appear in decision theory. For example, Kirkwood [40, p. 53] relies on 
Dyer and Sarin which repeats the common error that the coefficients of a linear value 
function correspond to relative importance [27, p. 820]. Furthermore, “difference mea-
surement” which is the topic of Dyer and Sarin is not the correct model of preference 
measurement. More specifically, in his Remarks on the Analytic Hierarchy Process [26, p. 
250] Dyer’s major focus is in §3 where he argues that the AHP “generates rank order-
ings that are not meaningful” and states that “[a] symptom of this deficiency is the phe-
nomenon of rank reversal” but his argument is circular since the only AHP deficiency 
presented in §3 of his paper is rank reversal. Moreover, the AHP suffers from multiple 
methodological flaws that cannot be corrected by “its synthesis with the concepts of 
multiattribute utility theory” (which suffers from its own flaws) as stated by Dyer [26, p. 
249].

The AHP is a method for constructing preference scales and, as is the case for 
other methodologies, the operations of addition and multiplication are not applicable 
on AHP scale values. The applicability of addition and multiplication must be estab-
lished before these operations are used to compute AHP eigenvectors and, as we saw in 
§2.2, the fact that eigenvectors are unique up to a multiplicative constant does not 
imply the applicability of addition and multiplication.

t1 t2⁄
e1 e2⁄

Δt1 Δt2⁄ Δe1 Δe2⁄

a b–( ) c d–( )⁄ k=

b d=
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In order for addition and multiplication to be applicable on preference scale values, 
the alternatives must correspond to points on a straight line in an affine geometry (see 
§7.1 or Barzilai [18]). Since the ratio of points on an affine straight line is undefined, 
preference ratios, which are the building blocks of AHP scales, are undefined. In addi-
tion, pairwise comparisons cannot be used to construct affine straight lines.

The fundamental mathematical error of using inapplicable operations to construct 
AHP scales renders the numbers generated by the AHP meaningless. Other AHP 
errors include the fact that the coefficients of a linear preference function cannot corre-
spond to weights representing relative importance and therefore cannot be decom-
posed using Miller’s criteria tree; the eigenvector method is not the correct method for 
constructing preference scales; the assignment of the numbers 1-9 to AHP’s “verbal 
scales” is arbitrary, and there is no foundation for these “verbal scales” (see Barzilai [10, 
15, 20—23]).

9.4 Value Theory
Scale construction for physical variables requires the specification of the empirical 
objects and the property under measurement. For example, if the property under mea-
surement is temperature, the construction results in a temperature scale and, clearly, the 
measurement of length does not produce a mass scale. In the case of subjective measure-
ment too, the property under measurement must be explicitly specified. If the property 
under measurement is preference, the resulting scales are preference scales. Noting that 
von Neumann and Morgenstern’s measurement of preference [53, §3.1] results in util-
ity scales, we conclude that preference and utility (and, for the same reason, value, worth, 
ophelimity, etc.) are synonyms for the same underlying subjective property. It follows 
that the distinction between utility theory and value theory has no foundation in logic 
and science. For example, Keeney and Raiffa’s notion of “the utility of value” of an 
object ( , in [39, p. 221]) is as meaningless as “the temperature of the tempera-
ture of water” or “the length of the length of a pencil” are.

Likewise, although the notions of “strength of preference” (Dyer and Sarin [27]) 
and “difference measurement” (e.g. Krantz et al. [41], Roberts [56]) are intuitively 
appealing, these measurement models of value, utility, priorities, etc., are based on mea-
surement theory errors as shown above. Similarly, the utility theories in Edwards [28] 
are founded on errors as well and, although the issues have been known for a few 
years, the more recent “Advances in Decision Analysis” (Edwards et al. [29]) does not 
contribute to correcting these methodological errors.

9.5 Group Decision Making
The common view in the classical literature concerning group decision making is 
based on a misinterpretation of the implications of Arrow’s Impossibility Theorem [1] 
which is a negative result. Constructive theories cannot be founded on negative results 
and, in addition, this theorem deals with ordinal scales which enable the relation of 
order but do not enable the operations of addition and multiplication. The concepts of 
trade-off  and cancellation are not applicable to ordinal scales — see Barzilai [17, §6.5] 
for details. 

u v x( )[ ]
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10 Summary
Classical decision and measurement theories are founded on errors which have been 
propagated throughout the literature and have led to a large number of methodologies 
that are based on flawed mathematical foundations and produce meaningless numbers.
The fundamental issue of applicability of the operations of addition and multiplication 
to scale values was not resolved by von Neumann and Morgenstern’s utility theory and 
the literature of classical decision and measurement theory offers no insight into this 
and other fundamental problems. Decision theory is not a prescriptive theory and deci-
sion analysis will not be a sound methodology until these errors are corrected. 

We identified the conditions that must be satisfied in order to enable the applica-
tion of linear algebra and calculus, and established that there is only one model for 
strong measurement of subjective variables. The mathematical foundations of the 
social sciences need to be corrected to account for these conditions. In particular, foun-
dational errors in utility theory, game theory, mathematical economics, decision the-
ory, measurement theory, and mathematical psychology need to be corrected. It is 
hoped that the leaders of INFORMS and its Decision Analysis Society, who have been 
aware of these errors for the last few years, will act to bring these errors to the atten-
tion of their followers and correct the educational literature.

This chapter includes the results of very recent research. The development of the 
theory, methodology, and software tools continues and updates will be posted at 
www.scientificmetrics.com.
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