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Abstract
By formally defining the relevant mathematical spaces and models we show that the 
operations of addition and multiplication, and the concepts that depend on these oper-
ations, are not applicable on ordinal, cardinal, and expected utility. Furthermore, 
expected utility’s scale construction rule is self-contradictory.

1 Introduction
Our purpose is to clarify some fundamental utility theoretical issues. While von Neu-
mann and Morgenstern’s utility axioms [7, p. 26] have attracted much attention, the 
framework in which they measure preference by constructing utility scales has been 
mostly overlooked and the applicability of mathematical operations on utility functions 
has been taken for granted in the literature of operations research and economic the-
ory. 

We define the relevant mathematical spaces and models and show that the opera-
tions of addition and multiplication, and the concepts that depend on these operations, 
are undefined and are not applicable on ordinal, cardinal, and expected utility func-
tions. 

2 Applicability of Operations: Mathematical Spaces
Mathematical spaces, e.g. vector or metric spaces, are sets of objects on which specific 
relations and operations (i.e. functions or mappings) are defined. They are distin-
guished by these relations and operations — unless explicitly specified, the objects are 
arbitrary. 

Only those relations and operations that are defined in a given mathematical space 
are relevant and applicable when that space is considered — the application of 
undefined relations or operations is an error. For example, although the operations of 
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addition and multiplication are defined in the field of real numbers, multiplication is 
undefined in the group of real numbers under addition; multiplication is not applicable 
in this group. 

In all the spaces that follow the relation of equality (an equivalence relation) is 
assumed to be defined.

2.1 Ordinal Spaces
An ordinal space is a set A of objects equipped only with the relations of order and 
equality. Our interest is limited to the case of a complete order where for any  
exactly one of , , or  holds (the relation of order is irreflexive, antisym-
metric, and transitive).

Since order and equality are not operations, i.e. single-valued functions, no opera-
tions are defined in ordinal spaces. Specifically, the operations of addition and multipli-
cation (and their inverses — subtraction and division) are not applicable in ordinal 
spaces.

2.2 Vector Spaces
2.2.1  Groups and Fields
A group is a set G with a binary operation, denoted , that satisfies the following 
axioms:

• The operation is closed:  for any . 

• The operation is associative:  for any . 

• The group has an identity: there exists  such that  for all .

• Inverse elements: for any , the equation  has a unique solution x, the 
inverse of a, in G.

In addition, if  for all , the group is commutative. 

A field is a set F with two operations that satisfy the following axioms:

• The set F is a commutative group under the operation of addition.

• The set , where zero is the additive identity, is a commutative group under 
the operation of multiplication.

•  for any .

• For any  the distributive law  holds.

A vector space is a pair of sets  with associated operations as follows. F is a field 
and its elements are termed scalars. The elements of V are termed vectors and V is a 

a b A
a b b a a b=

a bi

c a bi= G a b G

a bi  ci a b ci i= a b c  G

e G a ei a= a G

a G a xi e=

a bi b ai= a b G

F 0 –

a 0 0= a F

a b c  F a b c+  a b  a c +=

V F 
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commutative group under vector addition. For any scalars  and vectors 
 the scalar product  is defined and satisfies, in the usual notation, 

, ,  and .

2.3 Affine Spaces

An affine space is a triplet of sets  together with associated operations as fol-
lows (for equivalent definitions see Artzy [1] and Postnikov [8]). The pair  is a 
vector space. The elements of P are termed points and two functions are defined on 
points: a one-to-one and onto function  and a “difference” operation 

 that is defined by .

The difference  is not a closed operation on : although points and 
vectors can be identified through the one-to-one correspondence , the sets 
of points and vectors are equipped with different operations and the operations of 
addition and multiplication are not defined on points. If , it is convenient 
to say that the difference between the points a and b is the vector v. Accordingly, we 
say that an affine space is equipped with the operations of (vector) addition and (sca-
lar) multiplication on point differences. 

The dimension of the affine space  is the dimension of the vector space V. 
In a one-dimensional affine space, for any pair of vectors  where  there 
exists a unique scalar  so that  and the set P is termed an affine straight 
line. In a one-dimensional vector space, the ratio  for , , means 
that . Therefore, in an affine space, the expression  for the 
points  where , is defined and is a scalar:

(1)

if and only if the space is one-dimensional, i.e. a straight line. By definition, when the 
space is a straight line,  (where ) means that 

.

2.4 Ordered Affine Straight Lines

A field F is ordered if it contains a subset P such that if , then  and 
, and for any  exactly one of , or , or  holds. An 

ordered affine straight line is an affine straight line over an ordered field. 
The relation of order, which is needed to indicate a direction on a straight line (for 

example, to indicate that an object is more preferable than another), is defined in an 
ordered affine straight line since it is an ordered one-dimensional space.

j k F
u v V kv V

j k+ v jv kv+= k u v+  ku kv+= jk v j kv = 1 v v=

P V F  
V F 

h : P V

 : P 2 V  a b  h a  h b –=

 : P 2 V P
h : P V

 a b  v=

P V F  
u v V v 0

 F u v=
u v = u v V v 0

u v=  a b   c d 
a b c d  P  c d  0

 a b 
 c d 
----------------- F

 a b   c d  = a b c d  P
 a b   c d =

a b P a b+ P
a b P a F a 0= a P a– P
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2.5 Expected Utility Spaces
Since expected utility axiom sets in the literature are not necessarily equivalent, we list 
here the main features of the von Neumann and Morgenstern’s axioms [7 p. 26]. 

This space is equipped with two completely ordered sets: a set A of arbitrary 
objects, and a set I which is the subset of the ordered field of real numbers in the open 
interval (0, 1). No operations are defined on the set A, but a single ternary operation 

 is defined in this space. Additional assumptions impose constraints 
on the order and the operation but no other relations or operations are defined in an 
expected utility space.

3 Applicability of Operations: Models
Whether non-physical properties such as utility (i.e. preference) can be measured, and 
hence whether mathematical operations can be applied on scale values representing 
such properties, remained an open question when in 1940 a Committee appointed by 
the British Association for the Advancement of Science in 1932 “to consider and report 
upon the possibility of Quantitative Estimates of Sensory Events” published its Final 
Report (see Ferguson et al. [3]). An Interim Report, published in 1938, included “a 
statement arguing that sensation intensities are not measurable” as well as a statement 
arguing that sensation intensities are measurable. These opposing views were not rec-
onciled in the 1940 Final Report (for additional details see Barzilai [2]). 

For our purposes it is sufficient to note the following elements of the measurement 
framework: An empirical system E is a set of empirical objects together with opera-
tions, and possibly the relation of order, which characterize a property under measure-
ment. A mathematical model M of the empirical system E is a set with operations that 
reflect the operations in E as well as the order in E when E is ordered. A scale s is a 
homomorphism from E into M, i.e. a mapping of the objects in E into the objects in M
that reflects the structure of E into M. The purpose of modelling E by M is to enable 
the application of mathematical operations on the elements of the mathematical sys-
tem M and mathematical operations in M are applicable if and only if they reflect 
empirical operations in E (see e.g. von Neumann and Morgenstern [7, §3.4]).

4 Ordinal Utility
An ordinal space, i.e. an ordered set, is not a Euclidean space. Since it is not a vector 
space, the elementary operations of addition and multiplication are not applicable in an 
ordinal space. Therefore, the operations and concepts of algebra and calculus are 
undefined in ordinal spaces. In particular, norms, metrics, derivatives, and convexity 
concepts are undefined and not applicable in an ordinal space. Therefore, ordinal util-
ity functions are not differentiable and, conversely, differentiable scales cannot be ordi-
nal and, since the partial derivatives of an ordinal utility function do not exist, the 
concept of marginal utility is undefined in an ordinal space. 

Under the titles Need for a theory consistently based upon ordinal utility and The ordinal 
character of utility Hicks [5, Chapter I, §§4—5] proceeds “to undertake a purge, rejecting 

e : I A A A
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all concepts which are tainted by quantitative utility” [5, p. 19]. In essence, he claims 
that wherever utility appears in economic theory, and in particular in demand theory 
which employs partial differentiation, it can be replaced by ordinal utility. The notion 
of differentiable ordinal functions is untenable and has no parallel in mathematics and 
science: Thermodynamics is not and cannot be founded on ordinal temperature scales. 
Clearly, the concept of “slope,” i.e. derivative, is undefined on an ordinal topographic 
map. 

Hicks’s untenable claim, which appears in current economic textbooks, was fol-
lowed in Samuelson’s Foundations of Economic Analysis [9, pp. 94—95] by a more techni-
cal, but incorrect, argument in support of this claim. This analysis is carried out in an 
unspecified space, which in fact is an ordinal space, and operations that are not applica-
ble in this space are applied. For example, the chain rule of differentiation is applied 
where the conditions for applying this rule are not satisfied. Note also that the set of 
ordinal scale transformations contains all monotone increasing functions (if  is an 
ordinal utility function, so is  where F is any monotone increasing function) but 
Samuelson’s chain rule argument applies only to the subset of differentiable ordinal 
scale transformations. (Consider for example the ordinal utility function  
whose value is 1 when both variables are rational and 2 otherwise.) For additional 
details see Barzilai [2, §3.4]. 

5 Cardinal Utility
The concept of cardinal utility has no counterpart (e.g. cardinal time or cardinal tem-
perature) in science. Saying that cardinal properties are those not preserved under all 
ordinal transformations amounts to saying that “cardinal” means “non-ordinal” which 
is not a proper definition. Some authors (e.g. Harsanyi [4, p. 40]) define cardinal utility 
functions as utility functions that are unique up to positive affine transformations (i.e. 
“interval” scales), but there is no mathematical definition of “cardinal space” in the liter-
ature and no proof that this scale-uniqueness type implies the applicability of the oper-
ations of addition and multiplication. In fact, it is easy to see that “interval” uniqueness 
does not imply the applicability of addition and multiplication.

6 Expected Utility

6.1 Inapplicability of Addition and Multiplication
Since various expected utility spaces differ only in the constraints they impose on the 
order relation and the expectation operation (they are equipped with one ternary opera-
tion), the operations of addition and multiplication (two binary operations) are not defi-
ned and are not applicable on expected utility scales. 

u x 
F u x  

u x1 x2 
Jonathan Barzilai 5 2011



6.2 The Expected Utility Rule is Self-Contradictory

The expected utility rule for lotteries, , imposes a constraint 
on the utility of the lottery  while no constraints are imposed 
on the utility of prizes. This rule is contradictory for prizes that are lottery tickets 
which the theory does not exclude.

7 Summary
It is not recognized in the literature (e.g. Hillier and Lieberman [6] and Harsanyi [4]) 
that the concepts of cardinal and expected utility are fundamentally flawed while the 
operations of algebra and calculus are not applicable on ordinal functions.
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